Functional properties, industrial use and potential uses of blackberries (Rubus spp.) on human health
DOI:
https://doi.org/10.32870/rayca.v0i0.106Keywords:
Rubus, antioxidants, phytochemicals, sustainability, industrial use.Abstract
The Rubus genus includes plants from the Rosaceae family, such as blackberries and raspberries, known for their antioxidant bioactive compounds with positi-ve effects on human health. This work describes the nutritional composition and antioxidant bioactive compounds of the Rubus genus, as well as its health benefits and possible industrial uses to take advantage of waste. The review highlights the biological active-ties of Rubus in the prevention of prevalent comor-bidities such as metabolic diseases, cardiovascular diseases, cancer, immune disorders, dyslipidemias, diabetes and hypertension. Scientific documents are compiled and demonstrate the potential uses of Rubus and its compounds in human health and the food industry, reducing waste and obtaining benefits from its components. The need for more clinical studies is mentioned to fully understand the effectiveness of dietary and pharmacological interventions with Rubus and its bioactive compounds, as well as their dosage.
References
Aguilera-Correa, J. J., Nohynek, L., Alakomi, H.-L., Esteban, J., Oksman-Caldentey, K.-M., Puupponen-Pimiä, R., Kinnari, T. J., & Perez-Tanoira, R. (2023). Reduction of methicillin-resistant Staphylococcus aureus biofilm growth and development using arctic berry extracts. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1176755
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
Ascencio Arteaga, A. (2022). Efecto de películas comestibles sobre la vida de anaquel y calidad de frutos de zarzamora. [Tesis de Maestría, Instituto Politécnico Nacional]. Repositorio DSpace. http://tesis.ipn.mx/xmlui/handle/123456789/30525
Barbieri, F., Montanari, C., Šimat, V., Skroza, D., Čagalj, M., Smole-Možina, S., Bassi, D., Gardini, F., & Tabanelli, G. (2022). Effects of Rubus fruticosus and Juniperus oxycedrus derivatives on culturability and viability of Listeria monocytogenes. Scientific Reports, 12, 13158. https://doi.org/10.1038/s41598-022-17408-4
Barkaoui, S., Madureira, J., Boudhrioua, N., & Cabo Verde, S. (2023). Berries: Effects on health, preservation methods, and uses in functional foods: a review. European Food Research and Technology, 249, 1689–1715. https://doi.org/10.1007/s00217-023-04257-2
Brunner, P. H., & Morf, L. S. (2025). Waste to energy, indispensable cornerstone for circular economy: A mini-review. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, 43(1), 26–38. https://doi.org/10.1177/0734242X241227376
Burgalia Osorio, M. (2021). El diseño como estrategia de circularidad en el aprovechamiento de residuos agroindustriales. Designia, 8(2), 131–151. https://doi.org/10.24267/22564004.634
Carbajal Núñez, I. (2021). Fermentados de zarzamora como atrayentes de Drosophila suzukii Matsumura (Diptera: Drosophilidae). [Tesis de Maestría, Universidad Michoacana de San Nicolás de Hidalgo]. Repositorio DSpace http://repositorioslatinoamericanos.uchile.cl/handle/2250/4244547
Cardona Tangarife, D. P., Patiño Arias, L. P., & Ormaza Zapata, A. M. (2021). Aspectos tecnológicos de la microencapsulación de compuestos bioactivos en alimentos mediante secado por aspersión. Ciencia y Tecnología Agropecuaria, 22(1), 1-21. https://doi.org/10.21930/rcta.vol22_num1_art:1899
Castañeda-Cardona, C. C., Guerra-Ramírez, D., Martínez-Solís, J., Barrientos-Priego, A. F., Peña-Ortega, M. G., & Morillo-Coronado, Y. (2024). Potencial nutracéutico de frutos de especies silvestres de zarzamora y frambuesa. Revista fitotecnia mexicana, 47(1), 11–17. https://doi.org/10.35196/rfm.2024.1.11
Chamberlain, L. K., Scott, H., Beddoe, N., & Rintoul-Hynes, N. L. J. (2024). Heavy metal contamination (Cu, Pb, and Cd) of washed and unwashed roadside blackberries (Rubus fruticose L.). Integrated Environmental Assessment and Management, 20(6), 2107–2115. https://doi.org/10.1002/ieam.4981
Cuesta-Riaño, C. S., Castro-Guascaa, M. P., & Tarazona-Díaz, M. P. (2022). Anthocyanin Extract from Blackberry Used as an Indicator of Hydrogen Potential. International Journal of Fruit Science, 22(1), 224–234. https://doi.org/10.1080/15538362.2022.2037036
De la Asunción-Romero, R., Jiménez-Elizondo, N., & Morales-Herrera, I. (2024). Effects of postharvest abiotic stress on the accumulation of bioactive compounds. Agronomía Mesoamericana, 35(SPE1), 60233. https://doi.org/10.15517/am.2024.60233
De la Rosa, R., X.F., Garcia, L., I., Hernández, M., J., Morales, B. J., Quiroz, V.J. D. C. (2022). Antocianinas, propiedades funcionales y potenciales aplicaciones terapéuticas. Revista Boliviana de Química, 39(5), 155–163. https://doi.org/10.34098/2078-3949.39.5.1
Delgadillo Ramírez, A. A. (2015). Determinación de la composición química, propiedades antioxidantes y físicas de la zarzamora (Rubus sp.) y del residuo de su procesamiento [Tesis de Licenciatura, Universidad Autónoma del Estado de Hidalgo]. UAEH Biblioteca Digital. http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/5241
Ebrahimi, P., & Lante, A. (2021). Polyphenols: A Comprehensive Review of their Nutritional Properties, 15, 164-172. https://doi.org/10.2174/1874070702115010164
Eminoğlu, M. B., Yegül, U., & Sacilik, K. (2019). Drying Characteristics of Blackberry Fruits in a Convective Hot-air Dryer, 54(9), 1546-1550. https://doi.org/10.21273/HORTSCI14201-19
Espada-Bellido, E., Ferreiro-González, M., Carrera, C., Palma, M., Álvarez, J. A., Barbero, G. F., & Ayuso, J. (2019). Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): Comparison between Ultrasound- and Microwave-Assisted Extraction Techniques. Agronomy, 9(11), 745. https://doi.org/10.3390/agronomy9110745
Estrada-Reyes, R., Ubaldo-Suárez, D., & Araujo-Escalona, A. G. (2012). Los flavonoides y el Sistema Nervioso Central. Salud mental, 35(5), 375–384. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33252012000500004
Felipe-Mendoza, N. A., Martínez-Hernández, M. de J., Ramírez-Benítez, M. del C., Hernández-González, K. D., Molina-Torres, J., Torres-Pelayo, V. del R. & Alvarado-Olivarez, M. (2023). Flavonoides, antocianinas y macronutrientes totales en productos artesanales de zarzamora(Rubus sp.) de Atecáxil, Veracruz, México. Polibotánica, 56(28), 183–201. https://doi.org/10.18387/polibotanica.56.10
Ferrari, C. C., Germer, S. P. M., & de Aguirre, J. M. (2011). Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder. Drying Technology, 30(2), 154–163. https://doi.org/10.1080/07373937.2011.628429
Franck, M., de Toro-Martín, J., Garneau, V., Guay, V., Kearney, M., Pilon, G., Roy, D., Couture, P., Couillard, C., Marette, A., & Vohl, M.-C. (2020). Effects of Daily Raspberry Consumption on Immune-Metabolic Health in Subjects at Risk of Metabolic Syndrome: A Randomized Controlled Trial. Nutrients, 12(12), 3858. https://doi.org/10.3390/nu12123858
Fredes, C., Moya, J. L., Jara, M., & Reyes-Jara, A. (2023). Reducción, reutilización y reciclaje: Una revisión crítica del conocimiento científico sobre las pérdidas y desperdicios de alimentos en Chile. Revista chilena de nutrición, 50(3), 332–347. https://doi.org/10.4067/s0717-75182023000300332
Gil-Martínez, L., Mut-Salud, N., Ruiz-García, J. A., Falcón-Piñeiro, A., Maijó-Ferré, M., Baños, A., De la Torre-Ramírez, J. M., Guillamón, E., Verardo, V., & Gómez-Caravaca, A. M. (2023). Phytochemicals Determination, and Antioxidant, Antimicrobial, Anti-Inflammatory and Anticancer Activities of Blackberry Fruits. Foods, 12(7), 1505. https://doi.org/10.3390/foods12071505
Grandez Yoplac, D. E. (2021). Cinética de degradación de las antocianinas en el secado de la cáscara de berries. [Tesis de Licenciatura, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas]. https://repositorio.untrm.edu.pe/handle/20.500.14077/2300
Güemes-Vera, N., Ríos-Pérez, F., Soto Simental, S., Quintero Lira, A., & Piloni Martini, J. (2020). Harina de cáscara de vaina de cacao: Una opción para el aprovechamiento de residuos agroindustriales. Boletín de Ciencias Agropecuarias del ICAP, 6(11), 5-7. https://doi.org/10.29057/icap.v6i11.5322
Henrotin, Y., Cozannet, R. L., Fança-Berthon, P., Truillet, R., Cohen-Solhal, M., DunnGalvin, G., Grouin, J.-M., & Doolan, A. (2022). Rubus idaeus extract improves symptoms in knee osteoarthritis patients: Results from a phase II double-blind randomized controlled trial. BMC Musculoskeletal Disorders, 23(1), 650. https://doi.org/10.1186/s12891-022-05612-2
Hua, Z., Bian, Y., Lu, F., Liu, S., Ma, W., Chen, T., Feng, J., Xia, Y., & Fang, Y. (2025). Changes in antioxidant and flavor profiles of raspberry, blackberry, and mulberry juices fermented by urolithin A-producing Limosilactobacillus fermentum FUA033. Food Bioscience, 65, 106131. https://doi.org/10.1016/j.fbio.2025.106131
Instituto Nacional de Estadística y Geografía. (25 de febrero de 2025). Estadísticas de Defunciones Registradas (EDR). Información demográfica y social. Recuperado el 26 de febrero de 2025 de https://www.inegi.org.mx/programas/edr/
Jung, S.-J., Park, E.-O., Chae, S.-W., Lee, S.-O., Kwon, J.-W., You, J.-H., & Kim, Y.-G. (2023). Effects of Unripe Black Raspberry Extract Supplementation on Male Climacteric Syndrome and Voiding Dysfunction: A Pilot, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 15(15), 3313. https://doi.org/10.3390/nu15153313
Karaklajic-Stajic, Z., Tomic, J., Pesakovic, M., Paunovic, S. M., Stampar, F., Mikulic-Petkovsek, M., Grohar, M. C., Hudina, M., & Jakopic, J. (2023). Black Queens of Fruits: Chemical Composition of Blackberry (Rubus subg. rubus Watson) and Black Currant (Ribes nigrum L.) Cultivars Selected in Serbia. Foods, 12(14), 2775. https://doi.org/10.3390/foods12142775
Knorr, D., & Augustin, M. A. (2025). Expanding our food supply: Underutilized resources and resilient processing technologies. Journal of the Science of Food and Agriculture, 105(2), 735–746. https://doi.org/10.1002/jsfa.13740
Kocabas, S., & Sanlier, N. (2024). The power of berries against cardiovascular diseases. Nutrition Reviews, 82(7), 963–977. https://doi.org/10.1093/nutrit/nuad111
Kopjar, M., Buljeta, I., Nosić, M., Ivić, I., Šimunović, J., & Pichler, A. (2022). Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides. Polymers, 14(11), 2179. https://doi.org/10.3390/polym14112179
Leite-Oliveira, N., Silveira-Alexandre, A. C., Henrique-Silva, S., de Abreu-Figueiredo, J., Aparecida-Rodrigues, A., & Vilela-de Resende, J. (2023). Drying efficiency and quality preservation of blackberries (Rubus spp. variety Tupy) in thenear and mid-infrared-assisted freeze-drying. Food Chemistry Advances, 3, 100550. https://doi.org/10.1016/j.focha.2023.100550
Lugo-Zarate, L., Delgado-Olivares, L., Cruz-Cansino, N. D. S., González-Olivares, L. G., Castrejón-Jiménez, N. S., Estrada-Luna, D., & Jiménez-Osorio, A. S. (2024). Blackberry Juice Fermented with Two Consortia of Lactic Acid Bacteria and Isolated Whey: Physicochemical and Antioxidant Properties during Storage. International Journal of Molecular Sciences, 25(16), 8882. https://doi.org/10.3390/ijms25168882
Martínez, C. J. E., Melo, S.D. V., Carbajal. V.I.A., & Torres, P.I. (2022). Efecto de tratamientos precosecha en la reversión y contenido de antocianinas del fruto de zarzamora (Rubus sp.). Perspectivas de la Ciencia y la Tecnología, 5(9), 11-18. https://revistas.uaq.mx/index.php/perspectivas/article/view/921
Martini, D., Marino, M., & Del Bo’, C. (2023). Berries and Human Health: Mechanisms and Evidence. Nutrients, 15(11), 2527. https://doi.org/10.3390/nu15112527
Meléndez-Sosa, M. F., García-Barrales, A. M., & Ventura-García, N. A. (2020). Perspectivas e impacto en la salud del consumo de los alimentos funcionales y nutracéuticos en México. RD-ICUAP, 6(1), 114-136. http://www.apps.buap.mx/ojs3/index.php/rdicuap/article/view/1745
Méndez Castillo, M., Torres Zapata, A., Acuña Lara, J., Moguel Ceballos, J. (2020). Alimentos funcionales, bases conceptuales y su aplicación en el diseño de planes de alimentación. Biociencias, 15(1), 1-14. https://revistas.uax.es/index.php/biociencia/article/view/1283
Miranda, J. J., & Zavaleta-Cortijo, C. (2023). The food crisis in the context of climate change and sustainable development goals. Revista Peruana De Medicina Experimental Y Salud Publica, 40(4), 392–394. https://doi.org/10.17843/rpmesp.2023.404.13553
Molina-Guerrero, C. E., Sanchez, A., & Vázquez-Núñez, E. (2020). Energy potential of agricultural residues generated in Mexico and their use for butanol and electricity production under a biorefinery configuration. Environmental Science and Pollution Research International, 27 28607–28622. https://doi.org/10.1007/s11356-020-08430-y
Morfín-Magaña, R., Pulido-Toro, E., Corona-Soto, M. D. J., Mendoza-Ballines, L. B., & Topete-Betancourt, K. C. (2023). Análisis del sistema de medición por atributos en la inspección de calidad para zarzamoras. Ingeniería Investigación y Tecnología, 24(3), 1–7. https://doi.org/10.22201/fi.25940732e.2023.24.3.018
Muniyandi, K., George, E., Sathyanarayanan, S., George, B. P., Abrahamse, H., Thamburaj, S., & Thangaraj, P. (2019). Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of Rubus fruits from Western Ghats, India. Food Science and Human Wellness, 8(1), 73–81. https://doi.org/10.1016/j.fshw.2019.03.005
Olivero-Verbel, J., Quintero-Rincón, P., & Caballero-Gallardo, K. (2024). Aromatic plants as cosmeceuticals: Benefits and applications for skin health. Planta, 260, 132. https://doi.org/10.1007/s00425-024-04550-8
Padilla-Bernal, L. E., Lara-Herrera, A., & Vélez-Rodríguez, A. (2020). Sustentabilidad y desempeño ambiental de la agricultura protegida: El caso de Zacatecas. Revista Mexicana de Ciencias Agrícolas, 11(2), 289–302. https://doi.org/10.29312/remexca.v11i2.1766
Pang, L., Li, R., Chen, C., Huang, Z., Zhang, W., Man, C., Yang, X., & Jiang, Y. (2025). Combined processing technologies: Promising approaches for reducing Allergenicity of food allergens. Food Chemistry, 463(Part 4), 141559. https://doi.org/10.1016/j.foodchem.2024.141559
Quispe Limaylla, A. (2015). El valor potencial de los residuos sólidos orgánicos, rurales y urbanos para la sostenibilidad de la agricultura. Revista mexicana de ciencias agrícolas, 6(1), 83–95. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342015000100008
Ramírez Lagunas, K. A., Vargas Moreno, I., Herrera Meza, S., Rodríguez Landa, J. F., Puga Olguín, A., & Fernández Demeneghi, R. (2022). Efecto del jugo de zarzamora sobre los patrones conductuales de nado y el número de neuronas en la región cg1 de Ratas Wistar. UVserva, 13, 121–230. https://doi.org/10.25009/uvs.vi13.2821
Rattanawiwatpong, P., Wanitphakdeedecha, R., Bumrungpert, A., & Maiprasert, M. (2020). Anti-aging and brightening effects of a topical treatment containing vitamin C, vitamin E, and raspberry leaf cell culture extract: A split-face, randomized controlled trial. Journal of Cosmetic Dermatology, 19(3), 671–676. https://doi.org/10.1111/jocd.13305
Ravichandran, K. S., & Krishnaswamy, K. (2023). Sustainable food processing of selected North American native berries to support agroforestry. Critical Reviews in Food Science and Nutrition, 63(20), 4235–4260. https://doi.org/10.1080/10408398.2021.1999901
Reyes-Portillo, K. A., Soto-Simental, S., Hernández-Sánchez, H., Quintero-Lira, A., & Piloni-Martini, J. (2020). Alimentos funcionales a partir de calostro bovino. Boletín de Ciencias Agropecuarias del ICAP, 6(12), 9-11. https://doi.org/10.29057/icap.v6i12.5924
Robati, R., Mirahmadinejad, E., & Ghasemi, F. (2023). Bio-ethanol Production from Strawberry by Saccharomyces cerevisiae in Repeated Batch Abstract. Asian Food Science Journal, 22(9), 113–116. https://doi.org/10.9734/afsj/2023/v22i9662
Robbins, R. J., & Bean, S. R. (2004). Development of a quantitative high-performance liquid chromatography-photodiode array detection measurement system for phenolic acids. Journal of Chromatography A, 1038(1–2), 97–105. https://doi.org/10.1016/j.chroma.2004.03.009
Robinson, J. A., Bierwirth, J. E., Greenspan, P., & Pegg, R. B. (2020). Blackberry polyphenols: Composition, quantity, and health impacts from in vitro and in vivo studies. Journal of Food Bioactives, 9, 40-51. https://doi.org/10.31665/JFB.2020.9217
Rodríguez-Bautista, G., Segura Ledesma, S. D., Cruz-Izquierdo, S., López-Medina, J., Gutierrez-Espinosa, A., Cruz-Huerta, N., Carrillo-Salazar, J., & Valenzuela Núñez, L. M. (2019). Distribución y variabilidad morfológica de especies de zarzamoras en México (Rubus spp L.). Biotecnia, 21(2), 97-105. https://doi.org/10.18633/biotecnia.v21i2.935
Rojas-González, A. F., Flórez-Montes, C., & López-Rodríguez, D. F. (2019). Prospectivas de aprovechamiento de algunos residuos agroindustriales. Revista Cubana de Química, 31(1), 31–52. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2224-54212019000100031&lng=es&nrm=iso
Rubio Ochoa, E., Pérez Sánchez, R.E., Ávila Val, T. C., Gómez Leyva, J. F., García Saucedo, P. A., (2019). Propiedades fisicoquímicas de frutos silvestres de Rubus con potencial nutracéutico y alimenticio. Revista Mexicana de Ciencias Agrícolas, (23), 291–301. https://doi.org/10.29312/remexca.v0i23.2028
Salah-Eldin, A. A., Ibrahim, H. H., & Ali, M. R. (2024). Antimicrobial and therapeutic potentials of the blackberry extracts against Escherichia coli infection in male albino rats. Journal of the Science of Food and Agriculture, 104(13), 7776–7787. https://doi.org/10.1002/jsfa.13572
Sánchez-Pasos, D., Montoya, C. J., Bazán-Rodríguez, J., Gutierrez-Magan, C., & Rojas, M. L. (2022). Effect of Drying by Lyophilization and Atomization on the Characteristics and Properties of Fruit Powders: A Systematic Review. Proceedings of the 20th LACCEI International Multi-Conference for Engineering, Education and Technology: “Education, Research and Leadership in Post-pandemic Engineering: Resilient, Inclusive and Sustainable Actions”. (1-9). https://doi.org/10.18687/LACCEI2022.1.1.104
Santeramo, F. G. (2022). Circular and green economy: The state-of-the-art. Heliyon, 8(4), e09297. https://doi.org/10.1016/j.heliyon.2022.e09297
Secretaría de Agricultura y Desarrollo Rural. (05 de noviembre de 2021). Zarzamora, la frutilla número uno de México. Gobierno de México. http://www.gob.mx/agricultura/articulos/zarzamora-la-frutilla-numero-uno-de-mexico
Secretaría de Economía. (2017). Productos alimenticios no industrializados para consumo humano- Fruta fresca- Zarzamora (Rubus spp.)-Especificaciones y métodos de prueba (NMX-FF-129-SCFI-2016). https://dof.gob.mx/nota_detalle_popup.php?codigo=5490424
Solverson, P. M., Rumpler, W. V., Leger, J. L., Redan, B. W., Ferruzzi, M. G., Baer, D. J., Castonguay, T. W., & Novotny, J. A. (2018). Blackberry Feeding Increases Fat Oxidation and Improves Insulin Sensitivity in Overweight and Obese Males. Nutrients, 10(8), 1048. https://doi.org/10.3390/nu10081048
Staszowska-Karkut, M., & Materska, M. (2020). Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients, 12(2), 463. https://doi.org/10.3390/nu12020463
Thorakkattu, P., Jain, S., Sivapragasam, N., Maurya, A., Tiwari, S., Dwivedy, A. K., Koirala, P., & Nirmal, N. (2025). Edible Berries-An Update on Nutritional Composition and Health Benefits-Part II. Current Nutrition Reports, 14, 10. https://doi.org/10.1007/s13668-024-00608-x
Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112
Tzima, K., Putsakum, G., & Rai, D. K. (2023). Antioxidant Guided Fractionation of Blackberry Polyphenols Show Synergistic Role of Catechins and Ellagitannins. Molecules, 28(4), 1933. https://doi.org/10.3390/molecules28041933
Valencia Sullca, C. E., & Guevara Pérez, A. (2013). Variación de la capacidad antioxidante y compuestos bioactivos durante el procesamiento del néctar de zarzamora (Rubus fructicosus L.). Revista de la Sociedad Química del Perú, 79(2), 116–125. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2013000200004
Vega-Castro, O., Vargas-Marulanda, D., Castro-Tobón, S., Vallejo-Marulanda, L., Vanegas-Arboleda, V., Henao-González, D., & Gómez-Narváez, F. (2024). Exploring the Potential of Spray-Dried Blackberry Powder Enriched with Zinc and Folic Acid as a Nutritional Alternative for Children and Pregnant Women. Food Biophysics, 20, 11. https://doi.org/10.1007/s11483-024-09892-0
Wang, G., Guan, S. L., Zhu, N., Li, Q., Chong, X., Wang, T., & Xuan, J. (2023). Comprehensive Genomic Analysis of SnRK in Rosaceae and Expression Analysis of RoSnRK2 in Response to Abiotic Stress in Rubus occidentalis. Plants, 12(9), 1784. https://doi.org/10.3390/plants12091784
Whyte, A. R., Cheng, N., Butler, L. T., Lamport, D. J., & Williams, C. M. (2019). Flavonoid-Rich Mixed Berries Maintain and Improve Cognitive Function Over a 6 h Period in Young Healthy Adults. Nutrients, 11(11), 2685. https://doi.org/10.3390/nu11112685
Xiong, X., Liu, Z., Che, X., Zhang, X., Li, X., & Gao, W. (2024). Chemical composition, pharmacological activity and development strategies of Rubus chingii: A review. Chinese Herbal Medicines, 16(3), 313–326. https://doi.org/10.1016/j.chmed.2024.01.007
Yamashita, C., Song, C. M. M., dos Santos, C., Malacrida, M., C. R., Freitas, M., I. C., & Branco, I. G. (2017). Microencapsulación de un extracto de subproducto de mora ( Rubus spp.) rico en antocianinas mediante liofilización. LWT, 84, 256–262. https://doi.org/10.1016/j.lwt.2017.05.063
Ye, Y., Guo, W., Ngo, H. H., Wei, W., Cheng, D., Bui, X. T., Hoang, N. B., & Zhang, H. (2024). Biofuel production for circular bioeconomy: Present scenario and future scope. Science of the Total Environment, 935, 172863. https://doi.org/10.1016/j.scitotenv.2024.172863
Zafra Rojas, Q. Y. (2019). Valorización de los subproductos del procesamiento de la zarzamora (Rubus fruticosus), por su contenido en antioxidantes y fibra dietética. [Tesis de Doctorado, Universidad Autónoma del Estado de Hidalgo]. UAEH Biblioteca Digital. http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/2675
Zhang, X., Zhao, A., Sandhu, A. K., Edirisinghe, I., & Burton-Freeman, B. M. (2022). Red Raspberry and Fructo-Oligosaccharide Supplementation, Metabolic Biomarkers, and the Gut Microbiota in Adults with Prediabetes: A Randomized Crossover Clinical Trial. The Journal of Nutrition, 152(6), 1438–1449. https://doi.org/10.1093/jn/nxac037
Zia-Ul-Haq, M., Riaz, M., De Feo, V., Jaafar, H. Z. E., & Moga, M. (2014). Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules, 19(8), 10998–11029. https://doi.org/10.3390/molecules190810998